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RF and Mechanical Characterization of Flip-Chip
Interconnects in CPW Circuits with Underfill

Zhiping Feng, Wenge Zhang, Bingzhi Su, K. C. Gupta,Fellow, IEEE,and Y. C. Lee

Abstract—RF characterization of flip-chip interconnects in
coplanar waveguide (CPW) circuits with underfill is reported.
The scattering-parameters have been measured up to 40 GHz
for GaAs CPW through-line chips flip-chip mounted on an
alumina substrate with and without an underfill epoxy. A lumped-
element model of flip-chip interconnect has been developed for
flip-chip assemblies with and without epoxy. Fatigue life of
flip-chip assemblies has been computed for different chip sizes
and substrates. The results show feasibility of using underfill
encapsulant in microwave/millimeter-wave frequency range.

Index Terms—CPW circuits, flip-chip, mechanical characteri-
zation, RF characterization.

I. INTRODUCTION

BECAUSE of several advantages compared to wire bond-
ing (low cost, better performance, high reliability, etc.),

RF and microwave assembly packages are increasingly likely
to use flip-chip bonding instead of wire bonding [1]. Generally,
flip-chip assembly requires an underfill to reduce the stress
on joints during thermal excursions, to increase the fatigue
life of joints, and to protect the assembly from environment
[2]–[7]. However, the underfill material affects the electrical
performance of the assembly due to different values of its
dielectric constant and dissipation factor compared to
those of air. The only related study reported earlier is of the
effect of Sealgard and Globtop on
performance of a low-noise amplifier (LNA) in the frequency
range from 5–15 GHz [8]. In this paper, both electrical and me-
chanical characterizations of coplanar waveguide (CPW) flip-
chip assemblies with underfill encapsulant have been reported.
The effects of underfill encapsulant on RF performance are
characterized up to 40 GHz based on measurements on CPW
flip-chip assemblies. A lumped-element model of flip-chip
interconnects has been developed for flip-chip assemblies with
and without epoxy. Reliability analysis of flip-chip assemblies
has been carried out by finite element analysis (FEA) and
results for the fatigue life are presented.

II. TEST CIRCUITS AND ASSEMBLY

Two GaAs chips containing CPW through-line sections and
on-wafer probe pads were selected for this experiment [9].
Chip #1, with dimensions of 1.106 mm 1.380 mm
0.635 mm, has a 50-CPW through line of 0.600 mm length
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Fig. 1. Layout of calibration standard set and carrier circuits on alumina
substrate.

fabricated on it. Chip #2, with length of 4.700 mm, is longer
than chip #1 and has a 4.125-mm CPW line on it. On these
test chips, six silver bumps were plated at the ends of the
CPW line and on the edges of ground planes. The dimension
of the bumps is 75 m in height and 150 m in diameter
before bonding. Multiline-TRL calibration set [10] and the
circuits for mounting GaAs chips were designed using 50-
CPW transmission lines and fabricated on a single 25.4 mm

25.4 mm alumina substrate. Fig. 1 shows the circuit layout
fabricated on the alumina substrate.

The GaAs chips were mounted on the alumina substrate by
thermosonic flip-chip bonding [11]. The parameters selected
for this operation were: temperature 180C, bonding force
1.575 kg, and ultrasonic power 8.5 W. After bonding, the
epoxy (U300 from Epoxy Tech. Inc., with and

at 100 KHz) was filled in the gaps between
chips and the substrate and cured at 120C for 25 min.

RF measurements were performed on an HP8510 network
analyzer with on-wafer probes for a frequency range 0.05–40
GHz. Measurements on assemblies for chip #1 and chip #2
were carried out before as well as after adding the underfill
encapsulant.

III. RF MEASUREMENT RESULTS AND CHARACTERIZATION

Figs. 2 and 3 show measured-parameters of the flip-
chip assembly for chip #1 with and without underfill as a
function of frequency, and Figs. 4 and 5 show similar results
for the assembly with chip #2. Comparing the measured results
of the two flip-chip assemblies with and without underfill,
we see three kinds of effects due to underfill: 1) the return
loss and insertion loss of flip-chip assemblies increase; 2) the
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Fig. 2. Comparison of measuredS11 of flip-chip assembly with and without
underfill epoxy for chip #1.

Fig. 3. Comparison of measuredS21 of flip-chip assembly with and without
underfill epoxy for chip #1.

Fig. 4. Comparison of measuredS11 of flip-chip assembly with and without
underfill epoxy for chip #2.

frequencies of minimum reflection shift downwards; and 3) the
phase of the transmission coefficient shifts due to the epoxy.

A. Losses

The loss in the flip-chip assembly includes the loss of the
CPW line on the alumina substrate, the loss of the CPW
line on the GaAs chip, and the loss of flip-chip joints. After
addition of the underfill material, the presence of epoxy
increases the loss. Figs. 6 and 7 show the loss (evaluated as 10

of the flip-chip assemblies with and
without underfill epoxy for chip #1 and chip #2, respectively,
as functions of frequency. The additional loss at 40 GHz due
to underfill epoxy is less than 0.6 dB (0.266 dB/mm) for the

Fig. 5. Comparison of measuredS21 of flip-chip assembly with and without
underfill epoxy for chip #2.

Fig. 6. Comparison of losses of flip-chip assemblies for chip #1 with and
without underfill epoxy.

Fig. 7. Comparison of losses in flip-chip assemblies for chip #2 with and
without underfill epoxy.

flip-chip assembly with chip #1 and less than 1 dB (0.213
dB/mm) for the flip-chip assembly with chip #2.

B. Change in of CPW Line on GaAs

The shift in frequencies of minimum reflection can be
attributed to the difference in the values of effective dielectric
constant of CPW with and without the underfill epoxy. Effec-
tive dielectric constants of CPW on GaAs with and without
underfill (as computed by EM simulations on HP-HFSS, a
full-wave EM simulator-based finite element electromagnetic
analysis) are 7.259 and 8.917, respectively. The difference
caused by the underfill is about 23%. Table I shows the
measured and calculated (using the computed values of the
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TABLE I
COMPARISON OFMEASURED AND CALCULATED FREQUENCIES FORMINIMUM

REFLECTION IN FLIP-CHIP ASSEMBLIES WITH UNDERFILL EPOXY

Fig. 8. Comparison of measured and calculated phase shifts for chip #1
with and without epoxy.

Fig. 9. Comparison of measured and calculated phase shifts for chip #2
with and without epoxy.

effective dielectric constants) frequencies of minimum reflec-
tion for the two assemblies. The good agreement between the
measured and calculated frequencies for minimum reflection
validates the accuracy of our measurements and modeling.

C. Phase Shift Due to Underfill Epoxy

The phase shift of the transmission coefficient before
and after adding the epoxy underfill consists of three parts: the
first and the major part is the phase shift in CPW on GaAs with
and without epoxy (about 10.50for chip #1 and 59.85 for
chip #2 at 40 GHz), the second part is phase shift due to bump
interconnects (about 3.05at 40 GHz), the third part is phase
shift in CPW line on alumina (about 0.66at 40 GHz). The
bump height after bounding is about 62m, and the length of
CPW on alumina that got covered by epoxy is about 150m.
The measured and calculated values of phase shifts for chip
#1 and chip #2 are shown in Figs. 8 and 9. There is a fair
agreement between the measured and calculated phase shifts.

(a)

(b)

Fig. 10. Modeling of CPW flip-chip interconnects. (a) The lumped-element
model for CPW flip-chip interconnects. (b) Schematic of flip-chip assembly
used for modeling in MDS.

IV. M ODELING BASED ON MEASURED RESULTS

A lumped-element circuit model for a single CPW flip-chip
interconnect, a set of three bumps (not the assembly of a
through-line with two interconnects at two ends), is developed
based on physical considerations and is shown in Fig. 10(a).
In this model, denotes the inductance of bumps. and

represent the discontinuity capacitances at the bumps’
locations on alumina and GaAs substrates, respectively.
denotes the loss in the flip-chip interconnect. Values of various
elements in this model are derived by comparing-parameters
of the interconnects assembly with the measured results. The
assembly considered for the comparison consists of a CPW
through-line on GaAs, two interconnect models on each side
and two short sections of CPW line on alumina as shown in
Fig. 10(b). For CPW on GaAs, the effect of alumina substrate
on and with and without epoxy are evaluated by EM
simulation using HP-HFSS. The initially assumed values of the
lumped elements in the model are varied by the optimization
tool in microwave design system (MDS). Optimized values
corresponding to the lowest differences between measured-
parameters and those obtained from network analysis on MDS
are the values of and for the model shown in
Fig. 10.

The lumped-element models used for flip-chip interconnects
with and without epoxy are identical; however, the values
of elements in the model for flip-chip interconnects with
and without epoxy are different. Figs. 11 and 12 show the
comparison between measured-parameters and the corre-
sponding responses using the lumped-element model for chip
#1 without underfill epoxy. We note that model agrees very
well with the measured results. The corresponding value of
model parameters are shown in Table II. Figs. 13 and 14
show similar results for chip #1 with underfill epoxy. Again,
there is good agreement between measured results and the
response of the model. These model values are also shown in
Table II. The values of inductances in both cases are very
close. Values of two capacitances increase when underfill
epoxy is added. Using the lumped-element circuit model, we
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Fig. 11. Comparison of measuredS11 and the model of the flip-chip
assembly for chip #1 without epoxy.

Fig. 12. Comparison of measuredS21 and the model of the flip-chip
assembly for chip #1 without epoxy.

TABLE II
VALUES OF VARIOUS ELEMENTS IN THE MODEL OF

FLIP-CHIP INTERCONNECT WITH AND WITHOUT EPOXY

Fig. 13. Comparison of measuredS11 and the model of the flip-chip
assembly for chip #1 with epoxy.

can calculated the insertion loss introduced by a single CPW
flip-chip interconnect (set of three bumps). The increase in the
insertion loss because of underfill epoxy is found to be 0.5
dB at 35 GHz.

Fig. 14. Comparison of measuredS21 and the model of the flip-chip
assembly for chip #1 with epoxy.

(a)

(b)

Fig. 15. The structure for the finite element analysis of flip-chip assembly.
(a) Top view of the structure. (b) The mesh for the finite element analysis
of the flip-chip assembly.

V. MECHANICAL CHARACTERIZATION OF FLIP-CHIP

ASSEMBLY WITH UNDERFILL ENCAPSULANT

Thermomechanical stresses on the joints, due to coefficient
of thermal expansion (CTE) mismatch between the flipped
chip and the substrate, lead to thermomechanical fatigue and
consequent failure of the assembly. This stress can be reduced
by encapsulation of the joint with an underfill encapsulating
material. This enhances the reliability of the assembly. Com-
putations leading to fatigue life consist of three steps: 1) solder
joint profile prediction; 2) evaluation of inelastic strain energy
density by using FEA; and 3) fatigue life estimation. The
solder joint profile was obtained by using Surface Evolver
(a software for predicting solder joint profile developed by
University of Minnesota), and the details of this model can be
found in [13]. The other two steps are described below.

Fig. 15 shows the mesh for the FEA of the assembly
with underfill epoxy. Because of the symmetry, only 1/4
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Fig. 16. The distribution of equivalent plastic strain in the solder joint.

TABLE III
MECHANICAL PROPERTIES FORFEM SIMULATION

of the assembly was analyzed. Typically, the finite element
deformation/strain/stress analysis for flip-chip or ball grid
array (BGA) assemblies uses global and local models [13].
In the present case, since the number of joints is only six, it
is possible to merge the global model and local model into
one for computational efficiency. In this model, the 20-node
quadratic brick element and 15-node quadratic triangular prism
element were used for thermally induced strain/stress/fatigue
analysis. There are four layers of elements in the solder joint
(Fig. 16). The model was established using Patran 3, and
the computation used Abaqus 5.6.1 The material properties,
coefficient of thermal expansion (CTE), Young’s modulus, and
glass transition temperature are listed in Table III. The
plastic properties of solder joint were taken from [13]. The
results obtained from the model were strain/stress distributions
and the maximum inelastic strain energy density in the solder
joint. The maximum inelastic strain energy density was used
to estimate the fatigue life of solder joint.

For estimation of the fatigue, the inelastic strain energy
density method was chosen [14]. The cyclic inelastic strain
energy density calculated by FEA was used as the
failure indicator. was correlated with thermal cycles for
crack initiation and propagation. Since the elastic strain energy
was recoverable, only plastic and creep strain energy densities
were used in the estimation. The accumulated inelastic strain
energy reached a stable level after the second cycle, so the
local model calculated only two thermal cycles. The maximum

1Patran 3 and Abaqus 5.6 are FEA softwares which are available from PDA
Engineering and Hibbitt, Karlsson & Sorensen Inc., respectively.

energy density of the second cycle was used for estimation of
solder fatigue life. The inelastic strain energy density is
defined as

(1)

where are the stress components, are the incremental
plastic strain components, and are the creep strain rate
components. The integrals in (1) are carried over one thermal
cycle denoted by The empirical relations developed by
Daveaux [6] for crack initiation and propagation in eutectic
Sn–Pb solders are

(2)

(3)

where is the number of cycles before a crack forms, and
is the area crack growth rate. The unit for is psi.

The numbers of cycles of the solder fatigue is estimated as

(4)

where is crack length of the solder joint in inches and this
length is chosen as 1.5 times the pad diameter.

In the present study, the solder pad diameter selected is
150 m, and the solder height is 62m. The die thickness is
635 m, and the substrate thickness is 635m. Eight cases
are selected (see Table IV) to study the effects of die size,
substrate material, and underfill epoxy on the fatigue life of
solder joints. The fatigue analysis is based on the thermal
cycling with temperature changes from 0C to 100 C with
240 s dwell time and 150 s ramp time. Fig. 16 shows the
plastic equivalent strain distribution of the solder joint at the
corner of the die. It can be seen that the maximum plastic
equivalent strain is at the upper right-hand corner of the solder
joint, and this is consistent with the experimental observation
that cracks always start here for a convex shape joint.

Fig. 17 shows the values of the fatigue life for the eight
cases listed in Table IV. Without underfill epoxy, the fatigue
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Fig. 17. Fatigue life of different assemblies.

TABLE IV
EIGHT CASES CONSIDERED FORCOMPUTING FATIGUE LIFE OF FLIP-CHIP JOINTS

life of the assembly with duroid substrate and die size of
4.700 mm 1.389 mm (chip #2) is only 1300 cycles. The
fatigue life of the assembly with alumina ceramic substrate
is 3300 cycles. The duroid substrate decreases the fatigue
life greatly. The duroid substrate leads to a larger global
mismatch on solder joint due to its larger CTE (17 ppm)
compared with that of alumina (5.6 ppm). For the assembly
on the duroid substrate and without the underfill epoxy,
the fatigue life is too small to be acceptable. In order to
increase the reliability and the fatigue life of the assembly, an
underfill epoxy is needed. As shown in Fig. 17, the underfill
epoxy increases the fatigue life of the assembly with chip
#2 on the duroid substrate from 1300 to 11 000 cycles. The
underfill epoxy reduces the global mismatch of solder joints
and leads to a longer fatigue life of solder joints. The effect
of underfill epoxy in this case is very impressive.

VI. CONCLUDING REMARKS

The investigations reported in this paper show that the U300
epoxy (from Epoxy Tech. Inc.) with
(measured at 100 kHz) can be used for flip-chip assemblies
up to 40 GHz with only a small additional loss. The effect
of the change in can be compensated by modifying the
line lengths appropriately. By choosing an underfill epoxy with
lower loss and lower dielectric constant, the effects of underfill
could be reduced further. The underfill epoxy does not change
the lump-element model of the flip-chip interconnect greatly
and increases the insertion loss of one flip-chip interconnect by
0.5 dB at 30 GHz. Underfill encapsulant increases the fatigue
life of flip-chip assemblies significantly.
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