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RF and Mechanical Characterization of Flip-Chip
Interconnects in CPW Circuits with Underfill

Zhiping Feng, Wenge Zhang, Bingzhi Su, K. C. Guptallow, IEEE,and Y. C. Lee

Abstract—RF characterization of flip-chip interconnects in
coplanar waveguide (CPW) circuits with underfill is reported.
The scattering-parameters have been measured up to 40 GHz
for GaAs CPW through-line chips flip-chip mounted on an
alumina substrate with and without an underfill epoxy. A lumped-
element model of flip-chip interconnect has been developed for
flip-chip assemblies with and without epoxy. Fatigue life of
flip-chip assemblies has been computed for different chip sizes
and substrates. The results show feasibility of using undefrfill

encapsulant in microwave/millimeter-wave frequency range.
Index Terms—CPW circuits, flip-chip, mechanical characteri- : s
zation, RF characterization. Line2 Thru Line3

LinedShort 5

I. INTRODUCTION

Fjg. 1. Layout of calibration standard set and carrier circuits on alumina

ECAUSE of several advantages compared to wire bongs "

ing (low cost, better performance, high reliability, etc.),

RF and_micr_owave qss_embly packgges are increasingly Iik(ﬁ'lgéf)ricated on it. Chip #2, with length of 4.700 mm, is longer
to use flip-chip bonding instead of wire bonding [1]. GeneraII){haln chip #1 and has a,4.125-mm CPW line on |t On these

flip-chip assembly requires an underfill to reduce the stretsesst chips, six silver bumps were plated at the ends of the

on joints during thermal excursions, to increase the fatig . . )
life of joints, and to protect the assembly from environmen W line and on the nges c.)f ground pIanes.. Th? dimension
’ f the bumps is 75:m in height and 15Qum in diameter

2]-[7]. However, the underfill material affects the electric 7 : . : .
LgrfE)r]mance of the assembly due to different values of isefor_e bonding. Mululme-TRL_ calibration ;et [10] gnd the
dielectric constant and dissipation factoan ) compared to Circuits for mounting GaAs chips were designed using50-

those of air. The only related study reported earlier is of th%PW transmission lines and fabricated on a single 25.4 mm

_ - X 25.4 mm alumina substrate. Fig. 1 shows the circuit layout
effect of Sealgarde,. = 2.8) and Globtop(e,, = 3.14) on fabricated on the alumina substrate.

performance of a low-noise amplifier (LNA) in the frequency The GaAs chips were mounted on the alumina substrate by

range from 5-15 G.HZ [8]' In this paper, both ele_ctncal and M hermosonic flip-chip bonding [11]. The parameters selected
chanical characterizations of coplanar waveguide (CPW) flip- this operation were: temperature 18G, bonding force

chip assemblies with underfill encapsulant have been reportfoqg.75 ka. and ultrasonic power 8.5 W. After bonding. the
The effects of underfill encapsulant on RF performance aré Xy (%’300 from EpoxypTech Inc.. with. — 4.1 a%d

characterized up to 40 GHz based on measurements on C _ , .
flip-chip assemblies. A lumped-element model of flip-chi?ﬂilpéS gng'?ﬁg gabls(i?at}éHazrde\(l:isrefcli”Z? 1'&;2? Zgjspssinbetween

interconnects has been developed for flip-chip assemblies wi th measurements were performed on an HP8510 network

and without epoxy. Reliability analysis of flip-chip assemb“egnalyzer with on-wafer probes for a frequency range 0.05-40

has been camed' out .by finite_element analysis (FEA) ar&ﬂ—u. Measurements on assemblies for chip #1 and chip #2
results for the fatigue life are presented. : . .
were carried out before as well as after adding the underfill
encapsulant.
II. TEST CIRCUITS AND ASSEMBLY

Two GaAs chips containing CPW through-line sections anq);. RF MEASUREMENT RESULTS AND CHARACTERIZATION
on-wafer probe pads were selected for this experiment [9].

Chip #1, with dimensions of 1.106 mnx 1.380 mm x
0.635 mm, has a 50+ CPW through line of 0.600 mm length

Figs. 2 and 3 show measureftparameters of the flip-
chip assembly for chip #1 with and without underfill as a
function of frequency, and Figs. 4 and 5 show similar results
Manuscript received March 27, 1998; revised September 4, 1998. for the assembly with chip #2. Comparing the measured results
The authors are with the NSF Center for Advanced Manufacturing agf the two flip-chip assemblies with and without underfill
Packaging of Microwave, Optical, and Digital Electronics, University of h kind f off d derfill: h ’
Colorado at Boulder, Boulder, CO 80309 USA. we see three kinds of effects due to underfill: 1) the return
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Fig. 2. Comparison of measuréd; of flip-chip assembly with and without Fig. 5. Comparison of measureét, of flip-chip assembly with and without
underfill epoxy for chip #1. underfill epoxy for chip #2.
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Fig. 3. Comparison of measurél of flip-chip assembly with and without Fig. 6. Comparison of losses of flip-chip assemblies for chip #1 with and
underfill epoxy for chip #1. without underfill epoxy.
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Fig. 4. Comparison of measuréd ; of flip-chip assembly with and without Fig. 7. Comparison of losses in flip-chip assemblies for chip #2 with and
underfill epoxy for chip #2. without underfill epoxy.

frequencies of minimum reflection shift downwards; and 3) tHép-chip assembly with chip #1 and less than 1 dB (0.213
phase of the transmission coefficient shifts due to the epoxgiB/mm) for the flip-chip assembly with chip #2.

A. Losses B. Change ire,. of CPW Line on GaAs

The loss in the flip-chip assembly includes the loss of the The shift in frequencies of minimum reflection can be
CPW line on the alumina substrate, the loss of the CP®@tributed to the difference in the values of effective dielectric
line on the GaAs chip, and the loss of flip-chip joints. Aftegonstant of CPW with and without the underfill epoxy. Effec-
addition of the underfill material, the presence of epoxijve dielectric constants of CPW on GaAs with and without
increases the loss. Figs. 6 and 7 show the loss (evaluated agnderfill (as computed by EM simulations on HP-HFSS, a
log{(1—(511)%)/(S21)?}) of the flip-chip assemblies with andfull-wave EM simulator-based finite element electromagnetic
without underfill epoxy for chip #1 and chip #2, respectivelygnalysis) are 7.259 and 8.917, respectively. The difference
as functions of frequency. The additional loss at 40 GHz deaused by the underfill is about 23%. Table | shows the
to underfill epoxy is less than 0.6 dB (0.266 dB/mm) for theneasured and calculated (using the computed values of the
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TABLE | L R
COMPARISON OF MEASURED AND CALCULATED FREQUENCIES FORMINIMUM

REFLECTION IN FLIP-CHIP ASSEMBLIES WITH UNDERFILL EPOXY = A% * 192
Frequency at minimum reflection (GHz)

Phase shift (degree)

No. of chip Measured Measured Calculated Cl C2
without epoxy with epoxy with epoxy
Chip#1 36.0050 32,2085 32,4857
Chip#2 342073 314108 30.8637
Chip#2 21,2235 19.6255 19.1490
Chip#2 94383 84385 8.5157 AGROUND AGROUND
@)
120
: i : i Oo—C—3—| Model = Model | 7 o
100 B foo A ! | of of
80 ; : : | O——"F— Joint """+ Joint —1+H—O
| ——Measured results ; CPW on CEW CPW on
: : Alumina on GaAs Alumina
60 4ot Calculated resuilts
| : | (b)
Fig. 10. Modeling of CPW flip-chip interconnects. (a) The lumped-element
model for CPW flip-chip interconnects. (b) Schematic of flip-chip assembly
used for modeling in MDS.
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IV. MODELING BASED ON MEASURED RESULTS

“ A lumped-element circuit model for a single CPW flip-chip

itherconnect, a set of three bumps (not the assembly of a
through-line with two interconnects at two ends), is developed
120 , , ‘ , based on physical considerations and is shown in Fig. 10(a).

Fig. 8. Comparison of measured and calculated phase shifts for chip
with and without epoxy.

100 | e In this model, L denotes the inductance of bumps1l and
- | i C2 represent the discontinuity capacitances at the bumps’
;% 80 -t ——Measured results |- e e locations on alumina and GaAs substrates, respectiviely.
T 60|  |—Calculatedresults| L ,,,,,,,,,,,,,,,,, denotes the loss in the flip-chip interconnect. Values of various
5 ‘ ; elements in this model are derived by compartgarameters
& 40 oo e PP o """"""""" of the interconnects assembly with the measured results. The
= 20 i e S EEU S S assembly considered for the comparison consists of a CPW
through-line on GaAs, two interconnect models on each side
0 i ; . . . .
0 10 20 20 0 and two short sections of CPW line on alumina as shown in

Fig. 10(b). For CPW on GaAs, the effect of alumina substrate
on Z, ande,. with and without epoxy are evaluated by EM
Fig. 9. Comparison of measured and calculated phase shifts for chip &ignulation using HP-HFSS. The initially assumed values of the
with and without epoxy. lumped elements in the model are varied by the optimization
) ) ) ) o tool in microwave design system (MDS). Optimized values
effective dielectric constants) frequencies of minimum reﬂeE’orresponding to the lowest differences between meassired
tion for the two assemblies. The good agreement between g, neters and those obtained from network analysis on MDS
measured and calculated frequencies for minimum reflectign, 1he values of,. R. C'1. and C2 for the model shown in
validates the accuracy of our measurements and modelingFig_ 10, T
The lumped-element models used for flip-chip interconnects
with and without epoxy are identical; however, the values
C. Phase Shift Due to Underfill Epoxy of elements in the model for flip-chip interconnects with

The phase shift of the transmission coeffici¢ht before and without epoxy are different. Figs. 11 and 12 show the
and after adding the epoxy underfill consists of three parts: th@mparison between measurédparameters and the corre-
first and the major part is the phase shift in CPW on GaAs wiiponding responses using the lumped-element model for chip
and without epoxy (about 10.5Gor chip #1 and 59.85for #1 without underfill epoxy. We note that model agrees very
chip #2 at 40 GHz), the second part is phase shift due to bumygll with the measured results. The corresponding value of
interconnects (about 3.0%t 40 GHz), the third part is phasemodel parameters are shown in Table Il. Figs. 13 and 14
shift in CPW line on alumina (about 0.6@t 40 GHz). The show similar results for chip #1 with underfill epoxy. Again,
bump height after bounding is about g#h, and the length of there is good agreement between measured results and the
CPW on alumina that got covered by epoxy is about 4600 response of the model. These model values are also shown in
The measured and calculated values of phase shifts for chigble Il. The values of inductances in both cases are very
#1 and chip #2 are shown in Figs. 8 and 9. There is a failose. Values of two capacitances increase when underfill
agreement between the measured and calculated phase shéftexy is added. Using the lumped-element circuit model, we

Frequency (GHz)



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 46, NO. 12, DECEMBER 1998

2272
—~ o
) ©
A =
b N
2] w 4. - : R S S
v 4 m ‘ : : —Measued results
——Measured resuits ‘ ) : ; :
) ; ; : I —— Modeling results [~  RRMARA SRRt :
i —Modeling results [~y : : ‘ : ;
; : 5 : ; ; |
€0 ' ‘ ‘ ‘ ‘ 0 10 20 30 40 50
0 10 20 30 40 50
Frequency (GHz)

Frequency (GHz)

Fig. 11. Comparison of measurefi; and the model of the flip-chip Fig.- 14. Comparison of measuref,; and the model of the flip-chip

assembly for chip #1 without epoxy.
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Fig. 12. Comparison of measurefl,;; and the model of the flip-chip
assembly for chip #1 without epoxy.

S11 (dB)

assembly for chip #1 with epoxy.
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TABLE I
VALUES OF VARIOUS ELEMENTS IN THE MODEL OF
FLIP-CHIP INTERCONNECT WITH AND WITHOUT EPOXY

L@H) [R(©Q) |Cl@F | C2(P

Chip #1 w/o epoxy 0.014 0.018 | 0.081 2x10°*

Chip #1 with epoxy | 0.010 0.028 {0.011 1.2x10 )

Fig. 15. The structure for the finite element analysis of flip-chip assembly.
(a) Top view of the structure. (b) The mesh for the finite element analysis
of the flip-chip assembly.

""""""" V. MECHANICAL CHARACTERIZATION OF FLIP-CHIP
ASSEMBLY WITH UNDERFILL ENCAPSULANT

Thermomechanical stresses on the joints, due to coefficient
of thermal expansion (CTE) mismatch between the flipped
chip and the substrate, lead to thermomechanical fatigue and
| Modeling results | b consequent failure of the assembly. This stress can be reduced

= : s by encapsulation of the joint with an underfill encapsulating
material. This enhances the reliability of the assembly. Com-
Frequency (GH2) putations leading to fatigue life consist of three steps: 1) solder
joint profile prediction; 2) evaluation of inelastic strain energy

.

|=——Measured results

T t

0 10 20 30 40 50

Fig. 13. Comparison of measurefl;; and the model of the flip-chip density by using FEA:; and 3) fatigue life estimation. The
assembly for chip #1 with epoxy. L - . .
solder joint profile was obtained by using Surface Evolver

(a software for predicting solder joint profile developed by

can calculated the insertion loss introduced by a single CPWiversity of Minnesota), and the details of this model can be
flip-chip interconnect (set of three bumps). The increase in tfeund in [13]. The other two steps are described below.
insertion loss because of underfill epoxy is found to be 0.5Fig. 15 shows the mesh for the FEA of the assembly

dB at 35 GHz.

with underfill epoxy. Because of the symmetry, only 1/4
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Fig. 16. The distribution of equivalent plastic strain in the solder joint.

MECHANICAL PROPERTIES FORFEM SMULATION

TABLE 1l

energy density of the second cycle was used for estimation of
solder fatigue life. The inelastic strain energy dengitif” is

Propertics CTE Modulus Teg defined as
(10°/K) (Mpa) &S] P o
GaAs 57 112815 AW = | 7y dej;+ | 75 dt (1)
Epoxy(U300) 105 7500 130 c c
Duroid 17 2070 P .
Ceramic{AL,O:) 5.6 372384 wherer;; are the stress components;; are the incremental

plastic strain components, anijj are the creep strain rate

of the assembly was analyzed. Typically, the finite elemef@mponents. The integrals in (1) are carried over one thermal
deformation/strain/stress analysis for flip-chip or ball gri§ycle denoted byc. The empirical relations developed by
array (BGA) assemblies uses global and local models [18aveaux [6] for crack initiation and propagation in eutectic
In the present case, since the number of joints is only six,3—Pb solders are
is possible to merge the global model and local model into Ny = 7860AW 1.0 2)
one for computational efficiency. In this model, the 20-node . _s 1.13
guadratic brick element and 15-node quadratic triangular prism dafdN =4.96 x 107AW 3)
element were used for thermally induced strain/stress/fatigiy@ere No is the number of cycles before a crack forms, and
analysis. There are four layers of elements in the solder joift/dXV is the area crack growth rate. The unit f#iV is psi.
(Fig. 16). The model was established using Patran 3, ahtie numbers of cycles of the solder fatigue is estimated as
the computation used Abaqus 5.@he material properties, N; = No + a/(da/dN) (4)
coefficient of thermal expansion (CTE), Young’'s modulus, and . S .
glass transition temperatu(d;) are listed in Table Ill. The Wherea is crack length of the solder joint in inches and this
plastic properties of solder joint were taken from [13]. Thjeength is chosen as 1.5 times the pad d|ameter. )
results obtained from the model were strain/stress distributiondn e present study, the solder pad diameter selected is
and the maximum inelastic strain energy density in the soldkpQ #mM. and the solder height is gam. The die thickness is
joint. The maximum inelastic strain energy density was us&$° #m, and the substrate thickness is §3%. Eight cases
to estimate the fatigue life of solder joint. are selected (see Table IV) to study the effects of die size,
For estimation of the fatigue, the inelastic strain energipbstrate material, and underfill epoxy on the fatigue life of
density method was chosen [14]. The cyclic inelastic strafi®lder joints. The fatigue analysis is based on the thermal
energy density(AW) calculated by FEA was used as th&ycling with temperature changes from°C to 100°C with
failure indicator. AW was correlated with thermal cycles for240 s dwell time and 150 s ramp time. Fig. 16 shows the
crack initiation and propagation. Since the elastic strain energastic equivalent strain distribution of the solder joint at the
was recoverable, only plastic and creep strain energy densigegner of the die. It can be seen that the maximum plastic
were used in the estimation. The accumulated inelastic straguivalent strain is at the upper right-hand corner of the solder
energy reached a stable level after the second cycle, so jiat, and this is consistent with the experimental observation
local model calculated only two thermal cycles. The maximuthat cracks always start here for a convex shape joint.

1patran 3 and Abaqus 5.6 are FEA softwares which are available from PDAF'g' ]"7 Sh(_)WS the value§ of the fatlgue life for the e.lght
Engineering and Hibbitt, Karlsson & Sorensen Inc., respectively. cases listed in Table 1V. Without underfill epoxy, the fatigue
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@with underfill |

Dr.

Fatigue life (cycles)

Duroid:
chip #1

(1]
(2]

Ceramic:
chip #2

Ceramic:
chip #1

Fig. 17. Fatigue life of different assemblies.

(3l
TABLE IV

EIGHT CAsES CONSIDERED FORCOMPUTING FATIGUE LIFE OF FLIP-CHIP JOINTS
[4]

Material of ‘With/without
Case Dies substrate Underfill
epoxy [5]
1 Chip #1 Ceramic Without
2 Chip #2 Ceramic Without
3 Chip #1 Duroid Without [6]
4 Chip #2 Duroid Without
5 Chip #1 Ceramic With
6 Chip #2 Ceramic With [7]
7 Chip #1 Duroid With
8 Chip #2 Duroid With

(8]

life of the assembly with duroid substrate and die size ofg
4.700 mmx 1.389 mm (chip #2) is only 1300 cycles. Thezio]
fatigue life of the assembly with alumina ceramic substrate
is 3300 cycles. The duroid substrate decreases the fatid
life greatly. The duroid substrate leads to a larger globgal?]
mismatch on solder joint due to its larger CTE (17 ppmi3]
compared with that of alumina (5.6 ppm). For the assembly
on the duroid substrate and without the underfill epoxyi4]
the fatigue life is too small to be acceptable. In order to
increase the reliability and the fatigue life of the assembly, an
underfill epoxy is needed. As shown in Fig. 17, the underfill
epoxy increases the fatigue life of the assembly with chip
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